Avatar uživatele
Pokročilý

Vyřešil už někdo následující matematický paradox?

V matematice je možné prokázat, že mezi dvěma odlišnými libovolně blízkými reálnými čísly existuje alespoň jedno iracionální číslo. Přitom je možné dokázat i to, že mezi dvěma odlišnými libovolně blízkými iracionálními čísly existuje alespoň jedno racionální číslo.

Toto by bylo i v pořádku, jenže problém začíná tam, že také je možné matematicky dokázat, že četnost iracionálních čísel (přesněji řečeno: transcendentních čísel) je nekonečněkrát větší, než četnost racionálních čísel.

Z toho pak vyplývá, že na každé racionálne číslo připadá nekonečně mnoho iracionálních čísel a to je v rozporu s prvním tvrzením.

Podařilo se již matematikem odstranit tento rozpor? Pokud ano, tak jak?

Toto se zato ptám, neboť nejnověji platí definice (jinak je to možné, že to nebylo někdy nedávno "vymyšlené", ale je to už dávno známé, jen já jsem o tom nevěděl), že mezi dvěma odlišnými libovolně blízkými racionálními (nebo iracionálními) čísly existuje nekonečně mnoho jiných reálných (racionálních a iracionálních) čísel. Teď nevím, že při tomto pojetí zda ještě platí výše uvedený paradox, nebo zda se to tímto odstranilo.

Pro bližší informace:

http://cs.wikipedia.org/…

Uzamčená otázka – ohodnoťte nejlepší odpověď symbolem palce.

Nejlepší odpověď

Avatar uživatele
Zlatý

áno, paradox platí, vlastne sa nejedná ani o paradox, ale o definíciu oboru racionálnym/iracionálnych čísiel v danom obore (medzi menším a väčším daným racionálnym/iracionálnym číslom).
definícia, ktorú ste nedávno "objavil", je známa od počiatkov modernej matematiky a patri medzi axiómy matematiky.

keďže sa nejedná o paradox, netreba ho riešiť, obory týchto čísiel sú definované.

 

Otázka nemá žádné další odpovědi.

Diskuze k otázce

 

U otázky nebylo diskutováno.

 

Přihlásit se

Položte otázku, odpovězte, zapojte se, …

začněte zde

Reklama

Kvalitní odpovědi v: Věda

Zlatý annas 3218
Zlatý quentos 1425
Zlatý mosoj 1387
Zlatý Drap 1208
Zlatý Kepler 945
Zlatý led 722
Zlatý gecco 710
Zlatý marci1 663
Zlatý Lamalam 656
Zlatý hanulka11 627

Zobrazit celkový žebříček

Facebook

 

Váš požadavek se vyřizuje, počkejte prosím.